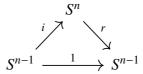
Chapter 0: Introduction

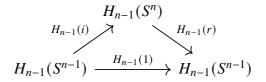
0.3 Assume, for $n \ge 1$, that $H_i(S^n) = \mathbb{Z}$ if i = 0, n, and that $H_i(S^n) = 0$ otherwise. Then the equator of the n-sphere is not a retract for $n \ge 1$.

PROOF. First, suppose n = 1. Then S^n is the unit circle and $S^{n-1} = \{\pm 1\}$. If there were a continuous map $r: S^n \to S^{n-1}$, then S^{n-1} would be the continuous image of a connected space, making S^{n-1} connected. This is a contradiction.

Now suppose n > 1. Suppose, for contradiction, that $r: S^n \to S^{n-1}$ is a retraction. This makes the following diagram commutative:



where i is inclusion and 1 is the identity. It follows from the properties of H_{n-1} that the diagram



is commutative. Note that $H_{n-1}(1)$ is the identity homomorphism. By assumption, $H_{n-1}(S^n) = 0$ and $H_{n-1}(S^{n-1}) = \mathbf{Z}$. This implies $H_{n-1}(r)$ is the trivial homomorphism, which is a contradiction since the diagram commutes.

0.4 If X is a topological space homeomorphic to D^n , then every continuous $f: X \to X$ has a fixed point

PROOF. Let $h: D^n \to X$ be a homeomorphism. Let $g: D^n \to D^n$ be defined by $g = h^{-1} \circ f \circ h$. Then g is continuous, so that g has a fixed point x by the Brouwer fixed-point theorem. Thus g(x) = x, so that f(h(x)) = h(x). It follows that h(x) is a fixed point of f.

0.10. EXAMPLE. Let G be a **monoid**, that is, a semigroup with 1. Then the following construction gives a category \mathscr{C} . Let obj \mathscr{C} have exactly one element, denoted by *; define $\operatorname{Hom}(*,*) = G$, and define composition $G \times G \to G$ as the given multiplication in G. Since multiplication in G is well-defined, it follows that composition is well-defined. We check axioms (i), (ii), and (iii). (i) is true vacuously. (ii) is true since multiplication is associative in G. The identity 1 in G is the identity G is a category. Note that this example shows morphisms may not be functions.

0.12. EXAMPLE. Given a category \mathscr{C} , we show that the following construction gives a category \mathscr{M} . First, an object of \mathscr{M} is a morphism of \mathscr{C} , Next if $f, g \in \text{obj}\mathscr{M}$, say $f: A \to B$ and $g: C \to D$, then a morphism of $M: f \to g$ in \mathscr{M} is an ordered pair (h, k) of morphisms of \mathscr{C} such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^h & & \downarrow^k \\
C & \xrightarrow{g} & D
\end{array}$$

commutes. Define composition coordinatewise:

$$(h',k')\circ(h,k)=(h'\circ h,k'\circ k).$$

Let $f: A \to B$, $f': C \to D$, and $f'': E \to F$ be objects in \mathcal{M} . Let $(h, k) \in \text{Hom}(f, f')$ and $(h', k') \in \text{Hom}(f', f'')$. Then $(h' \circ h, k' \circ k) \in \text{Hom}(f, f'')$ since $f'' \circ h' \circ h = k' \circ f' \circ h = k' \circ k \circ f$:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{h} & \downarrow^{k} \\
C & \xrightarrow{f'} & D \\
\downarrow^{h'} & \downarrow^{k'} \\
E & \xrightarrow{f''} & F
\end{array}$$

Hence, composition is well-defined. To check axiom (ii), observe that composition is associative since corrdinatewise composition is associative. Finally, for each $f: A \to B$, we have $1_f = (1_A, 1_B)$.

0.13. EXAMPLE. We show thaqt $\mathbf{Top^2}$ is a subcategory of \mathcal{M} , where \mathcal{M} is the category constructed in Exercise 0.12 with $\mathscr{C} = \mathbf{Top}$. We regard a pair $(X, A) \in \text{obj } \mathbf{Top^2}$ as an inclusion $i: A \hookrightarrow X$. Since $i \in \text{Hom}_{\mathscr{C}}(A, X)$, we have $i \in \text{obj}_{\mathscr{M}}$. Now let $B \subset Y$, let $j: B \hookrightarrow Y$ be inclusion, and let $(f, f') \in \text{Hom}_{\mathbf{Top^2}}(i, j)$. Then the following diagram commutes:

$$\begin{array}{ccc}
A & \stackrel{i}{\longrightarrow} X \\
\downarrow^{f'} & & \downarrow^{f} \\
B & \stackrel{j}{\longrightarrow} Y
\end{array}$$

Thus $(f, f') \in \text{Hom}_{\mathcal{M}}(i, j)$. Finally, composition is coordinatewise in both Top^2 and \mathcal{M} .

0.14 EXAMPLE. Let G be a group and let $\mathscr C$ be the one object category it defines (Exercise 0.10 applies because every group is a monoid): obj $\mathscr C = \{*\}$, $\operatorname{Hom}(*,*) = G$, and composition is the group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. We show that \sim is a congruence on $\mathscr C$ and that [*,*] = G/H is the corresponding quotient category. We know that \sim is an equivalence relation on $G = \operatorname{Hom}(*,*)$ from abstract algebra. Property (i) for congruences is satisfied trivially. For property (ii), suppose $a(a')^{-1} \in H$ and $b(b')^{-1} \in H$. Since H is normal, we have

$$(ab)(a'b')^{-1} = ab(b')^{-1}(a')^{-1} = ah(a')^{-1} = h'a(a')^{-1} = h'h'' \in H,$$

where $h, h', h'' \in H$, and so $ab \sim a'b'$. For the corresponding quotient category, observe that $obj\mathscr{C}' = obj\mathscr{C} = \{*\}$, $Hom_{\mathscr{C}'}(*,*) = \{aH : a \in H\}$, and $aH \circ bH = abH$. Thus [*,*] = G/H.

0.17. Let $\mathscr C$ and $\mathscr A$ be categories, and let \sim be a congruence on $\mathscr C$. If $T:\mathscr C\to\mathscr A$ is a functor, then T defines a functor $T':\mathscr C'\to\mathscr A$ (where $\mathscr C'$ is the quotient category) by T'(X)=T(X) for every object X ad T'([f])=T(f) for every morphism f.

PROOF. We verify that T satisfies properties (i)-(iv) in the definition of functor. For property (i), let $X \in \text{obj}\mathscr{C}'$. Then $X \in \text{obj}\mathscr{C}$ and $T'(X) = T(X) \in \text{obj}\mathscr{A}$. For (ii), let [f] be a morphism in \mathscr{C}' . Then T'([f]) = T(f) is a morphism in \mathscr{A} since T is a functor. For (iii), let [f], [g] be morphisms in \mathscr{C}' for which $[g] \circ [f]$ is defined. Then

$$T'([g] \circ [f]) = T'([g \circ f]) = T(g \circ f)$$

= $T(g) \circ T(f) = T'([g]) \circ T'([f]).$

For (iv), if $A \in \text{obj}\mathscr{C}'$, then $A \in \text{obj}\mathscr{C}$ and

$$T'([1_A]) = T(1_A) = 1_{TA} = 1_{T'A},$$

since T is a functor and TA = T'A.

0.20. EXAMPLE. If X is a topological space, let C(X) be the set of all continuous real-valued functions on X. We show that $X \mapsto C(X)$ gives a (contravariant) functor **Top** \to **Rings**. It is clear that C(X) is a commutative ring with 1. Let $m: X_1 \to X_2$ be continuous. Define $Cm: C(X_2) \to C(X_1)$ by $Cm(f) = f \circ m$. Then

$$Cm(f+g) = (f+g) \circ m = (f \circ m) + (g \circ m)$$

and

$$Cm(fg) = (fg) \circ m = (f \circ m)(g \circ m).$$

Hence, Cm is a homomorphism. To check property (iii), observe that if $n: X_2 \to X_3$ is continuous, then

$$C(n \circ m)(f) = f \circ n \circ m = (Cm \circ Cn)(f).$$

Finally, $C1_X(f) = f \circ 1_X = f$, so that $C1_X$ is the identity map on C(X); that is, $C1_X = 1_{CX}$.

Chapter 1: Some Basic Topological Notions

1.2. EXAMPLE. (i) Suppose $X \approx Y$ and X is contractible. Since X is contractible, there is a continuous map $F: X \times I \to X$ such that F(x, 0) = x and $F(x, 1) = x_0$, where $x_0 \in X$, for all $x \in X$. Let $g: Y \to X$ be a homeomorphism. Define $G: Y \times I \to Y$ by

$$G(y,i) = g^{-1} \circ F(g(y),i).$$

Then *G* is continuous since g, g^{-1} , and *F* are. Observe that $G(y, 0) = g^{-1}(g(y)) = y$ and $G(y, 1) = g^{-1}(x_0)$ for all $y \in Y$. It follows that 1_Y is null-homotopic. Thus *Y* is contractible.

- (ii) If X and Y are subspaces of euclidean space, $X \approx Y$, and X is convex, then Y might not be convex. For example, a line segment and the closed half circle are homeomorphic. However, the line segment is convex and the closed half circle is not.
- **1.3.** Let $R: S^1 \to S^1$ be rotation by α radians. Then $R \simeq 1_S$, where 1_S is the identity map of S^1 . Thus every continuous map $f: S^1 \to S^1$ is homotopic to a continuous map $g: S^1 \to S^1$ with g(1) = 1 (where $1 = e^{2\pi i 0} \in S^1$).

PROOF. Define $R_{\alpha}: S^1 \to S^1$ by $R_{\alpha}(e^{it}) = e^{i(t+\alpha)}$. Define $F: S^1 \times I \to S^1$ by

$$F(e^{it},s) = e^{i(t+\alpha(1-s))}.$$

Then F is continuous since small perturbations in S^1 and s produce small perturbations in the image. Observe that $F(e^{it},0) = R_{\alpha}(e^{it})$ and $F(e^{it},1) = e^{it}$. Therefore, $F: R_{\alpha} \simeq 1_S$.

Now suppose $f: S^1 \to S^1$ is a continuous map and suppose $f(1) = e^{i\beta}$. Take $g = R_{-\beta} \circ f$. Then $g \simeq 1_S \circ f = f$ by Theorem 1.3.

1.13. For a fixed t with $0 \le t < 1$, $x \mapsto [x, t]$ defines a homeomorphism from a space X to a subspace of CX.

PROOF. For $A \subset X$, define $\overline{A \times \{t\}} = \{\underline{[x,t]} : x \in A\}$. It is easy to see that $\{\overline{U \times \{t\}} : U \text{ is open in } X\}$ is a basis for $\overline{X \times \{t\}}$. Define $g : X \to \overline{X \times \{t\}}$ by g(x) = [x,t]. Clearly, g is bijective. If U is open in X, we have $g(U) = \overline{U \times \{t\}}$. Therefore, g and g^{-1} are continuous. Thus g is a homeomorphism. \square

1.29. EXAMPLE. For $n \ge 1$, we show that S^n is a deformation retract of $\mathbb{R}^{n+1} - \{0\}$. Let $X = \mathbb{R}^{n+1} - \{0\}$, and define $F : X \times I \to X$ by

$$F(x,t) = (1-t)x + tx/||x||.$$

THen F is continuous and $r: X \to S^n$, defined by r(x) = F(x, 1) is continuous. Since F(x, 0) = x for all $x \in X$, $F(x, 1) = r(x) \in S^n$ for all $x \in X$ and F(x, 1) = x for all $x \in S^n$, it follows that S^n is a deformation retract of X.

1.31. Let a = (0, ..., 0, 1) and b = (0, ..., 0, -1) be the north and south poles, respectively, of S^n . Then the equator, S^{n-1} is a deformation retract of $S^n - \{a, b\}$; hence, S^{n-1} and $S^n - \{a, b\}$ have the same homotopy type.

PROOF. Let $X = S^n - \{a, b\}$ and $Y = \mathbb{R}^n - \{0\}$. Let $g : X \to Y$ be the homeomorphism induced by stereographic projection. By Exercise 1.29, S^{n-1} is a deformation retract of Y. Hence, there is a continuous function $G : Y \times I \to Y$ such that G(y,0) = y for all $y \in Y$, $G(y,1) \in S^{n-1}$ for all $y \in Y$, and G(y,1) = y for all $y \in S^{n-1}$. Define $F : X \times I \to X$ by

$$F(x,t) = g^{-1} \circ G(g(x),t).$$

Then F is continuous. Observe that F(x,0) = x for all $x \in X$, $F(x,1) \in S^{n-1}$ for all $x \in X$, and F(x,1) = x for all $x \in S^{n-1}$ since $g: x \mapsto x$ for all $x \in S^{n-1}$. It follows that S^{n-1} is a deformation retract of X.

Chapter 3: The Fundamental Group

3.1. Generalize Theorem 1.3 as follows. Let $A \subset X$ and $B \subset Y$ be given. Assume that $f_0, f_1: X \to Y$ with $f_0|A = f_1|A$ and $f_i(A) \subset B$ for i = 0, 1; assume that $g_0, g_1: Y \to Z$ with $g_0|B = g_1|B$. If $f_0 \simeq f_1$ rel A and $g_0 \simeq g_1$ rel B, then $g_0 \circ f_0 \simeq g_1 \circ f_1$ rel A.

PROOF. Let $F: f_0 \simeq f_1$ rel A and $G: g_0 \simeq g_1$ rel B be homotopies. Define $H: X \times I \to Z$ by $H(x,t) = G(f_0(x),t)$. Clearly, $H: g_0 \circ f_0 \simeq g_1 \circ f_0$ rel \dot{I} . Next, let $K: X \times I \to Z$ be the composite $g_1 \circ F$. Then $K: g_1 \circ f_0 \simeq g_1 \circ f_1$ rel \dot{I} . This, together with the transitivity of the relative homotopy relation implies our result.

- **3.2** (i) If $f: I \to X$ is a path with $f(0) = f(1) = x_0 \in X$, then there is a continuous $f': S^1 \to X$ given by $f'(e^{2\pi it}) = f(t)$. If $f, g: I \to X$ are paths with $f(0) = f(1) = x_0 = g(0) = g(1)$ and if $f \simeq g$ rel \dot{I} , then $f' \simeq g'$ rel $\{1\}$.
- (ii) If f and g are as above, then $f \simeq f_1$ rel $\dot{\mathbf{I}}$ and $g \simeq g_1$ rel $\dot{\mathbf{I}}$ implies that $f' * g' \simeq f'_1 * g'_1$ rel $\{1\}$

PROOF. (i) First, f' is well-defined and continuous since $e^{2\pi it} \to [t]$ is a homeomorphism S^1 to I/I. Suppose $F: f \simeq g$ rel I. Define $F': S^1 \times I \to X$ by $F'(e^{2\pi it}, s) = F(t, s)$. Then $F': f' \simeq g'$ rel $\{1\}$.

(ii) By Theorem 3.1, there is a homotopy $H: f * g \simeq f_1 * g_1 \text{ rel } \dot{\mathbf{I}}$. Define $H': S^1 \times \mathbf{I} \to X$ by $H'(e^{2\pi i t}, s) = H(t, s)$. Then $H': f' * g' \simeq f'_1 * g'_1 \text{ rel } \{1\}$. \square

3.4 Let $\sigma: \triangle^2 \to X$ be continuous, where $\triangle^2 = [e_0, e_1, e_2]$. Define $\varepsilon_0: I \to \triangle^2$ as the affine map with $\varepsilon_0(0) = e_1$ and $\varepsilon_1(1) = e_2$; similarly, define ε_1 by $\varepsilon_1(0) = e_2$ e_0 and $\varepsilon_0(1) = e_2$, and define ε_2 by $\varepsilon_2(0) = e_0$ and $\varepsilon_2(1) = e_1$. Finally, define $\sigma_i = \sigma \circ \varepsilon_i$ for i = 0, 1, 2.

- (i) $(\sigma_0 * \sigma_1^{-1}) * \sigma_2$ is nullhomotopic rel İ. (ii) $(\sigma_1 * \sigma_0^{-1}) * \sigma_2^{-1}$ is nullhomotopic rel İ.
- (iii) Let $F: I \times I \to X$ be continuous, and define paths $\alpha, \beta, \gamma, \delta$ in X as located in the figure. Thus $\alpha(t) = F(t, 0)$, $\beta(t) = F(t, 1)$, $\gamma(t) = F(t, 0)$, and $\delta(t) = F(1, t)$. Then $\alpha \simeq \gamma * \beta * \delta^{-1}$ rel İ.

3.6. (i) If $f \simeq g$ rel \dot{I} , then $f^{-1} \simeq g^{-1}$ rel \dot{I} , where f, g are paths in X.

(ii) If f and g are paths in X with $\omega(f) = \alpha(g)$, then

$$(f * g)^{-1} = g^{-1} * f^{-1}.$$

(iii) There exists a closed path f with $f * f^{-1} \neq f^{-1} * f$.

(iv) If $\alpha(f) = p$ and f is not constant, then $i_p * f \neq f$.

PROOF. (i) Let $F: f \simeq g$ rel İ. Define $F': I \times I \to X$ by F'(t, s) = F(1 - t, s). Then F is continuous. Moreover, $F'(t, 0) = f^{-1}(t)$ and $F'(t, 1) = g^{-1}(t)$ for all

t ∈ I. Finally, $F'(0, s) = f^{-1}(0) = g^{-1}(0)$ and $F'(1, s) = f^{-1}(1) = g^{-1}(1)$ for all $s \in I$. Therefore, $F': f^{-1} \simeq g^{-1}$ rel \dot{I} .

(ii) We have

$$(f * g)^{-1}(t) = (f * g)(1 - t)$$

$$= \begin{cases} f(2(1 - t)) & \text{if } 0 \le 1 - t \le 1/2 \\ g(2(1 - t) - 1) & \text{if } 1/2 \le 1 - t \le 1 \end{cases}$$

$$= \begin{cases} g(1 - 2t) & \text{if } 0 \le t \le 1/2 \\ f(1 - (2t - 1)) & \text{if } 1/2 \le t \le 1 \end{cases}$$

$$= \begin{cases} g^{-1}(2t) & \text{if } 0 \le t \le 1/2 \\ f^{-1}(2t - 1) & \text{if } 1/2 \le t \le 1 \end{cases}$$

$$= (g^{-1} * f^{-1})(t).$$

(iii) Define $f: I \to S^1$ by $f(t) = e^{2\pi i t}$. Clearly, $f * f^{-1} \neq f^{-1} * f$. For example, $(f * f^{-1})(1/8) = e^{\pi i/2}$ and $(f^{-1} * f)(1/8) = e^{3\pi i/2}$.

(iv) We show that there is $t \in I$ such that $(i_p * f)(t) \neq f(t)$. If $t \leq 1/2$ and $f(t) \neq p$, then clearly, $(i_p * f)(t) \neq f(t)$. Therefore, we may assume that f(t) = p for all t in [0, 1/2]. Assume, for contradiction, that $(i_p * f)(t) = f(2t - 1) = f(t)$ for all $t \in (1/2, 1]$. Let $t \in (1/2, 1)$. Then by repeated applications of the equality f(t) = f(2t - 1), we obtain f(t) = f(s) for some $s \in [0, 1/2]$. Thus f(t) = p. This is a contradiction since f is not constant.

3.11 If $X = \{x_0\}$ is a one-point space, then $\pi_1(X, x_0) = \{1\}$.

PROOF. Since X has only one element, there is only one path in X; namely $t \mapsto x_0$ for all $t \in I$. Thus $\pi_1(X, x_0)$ is a group with one element.

3.14. If f is a closed path in S^1 at 1 and if $m \in \mathbb{Z}$, then $t \mapsto f(t)^m$ is a closed path in S^1 at 1 and

$$\deg(f^m) = m\deg(f).$$

PROOF. Let \tilde{f} be the lifting of f with $\tilde{f}(0) = 0$ and let \tilde{f}^m be the lifting of f^m with $\tilde{f}^m(0) = 0$. We show that $\tilde{f}^m = m\tilde{f}$. Clearly, $m\tilde{f}$ is continuous and $m\tilde{f}(0) = m \cdot 0 = 0$. Further, $f^m = (\exp \tilde{f})^m = \exp m\tilde{f}$. It follows that

$$\deg(f^m) = \tilde{f^m}(1) = m\tilde{f}(1) = m\deg f.$$

3.16. If T is the torus $S^1 \times S^1$, then

$$\pi_1(T, t_0) \cong \mathbf{Z} \times \mathbf{Z}.$$

PROOF. By Theorem 3.16, $\pi_1(S^1, t_1) \cong \pi_1(S^1, t_2) \cong \mathbb{Z}$ for all t_1, t_2 in S^1 . Let $t_0 = (t_1, t_2)$. Then by Theorem 3.7, we have

$$\pi_1(T, t_0) \cong \pi_1(S^1, t_1) \times \pi_1(S^1, t_2)$$

 $\cong \mathbf{Z} \times \mathbf{Z}.$

Chapter 4: Singular Homology

- **4.3.** For a given space X, define $S_1(X)$ to be the free abelian group with basis all paths $\sigma: I \to X$, and let $S_0(X)$ be the free abelian group with basis X.
- (i) There is a homomorphism $\partial_1: S_1(X) \to S_0(X)$ with $\partial_1 \sigma = \sigma(1) \sigma(0)$ for every path σ in X.
- (ii) If $x_1, x_0 \in X$, then $x_1 x_0 \in \text{im } \partial_1$ if and only if x_0, x_1 lie in the same path component of X.
- (iii) If σ is a path in X, then $\sigma \in \ker \partial_1$ if and only if σ is a closed path. Exhibit a nonzero element of $\ker \delta_1$ that is not a closed path.

PROOF. (i) This follows form Theorem 4.1.

(ii) Suppose $x_1 - x_0 \in \text{im } \partial_1$. Then there is a path $\sigma : I \to X$ with $\partial_1 \sigma = \sigma(1) - \sigma(0) = x_1 - x_0$. This implies $\sigma(1) = x_1$ and $\sigma(0) = x_0$. Hence, x_1, x_0 lie in the same path component of X.

Conversely, suppose x_1, x_0 lie in the same path component of X. Then there is a path $\sigma: I \to X$ with $\sigma(0) = x_0$ and $\sigma(1) = x_1$. Hence, $x_1 - x_0 = \sigma(1) - \sigma(0) = \partial_1(\sigma)$.

(iii) If σ is a path, we have $\sigma \in \ker \partial_1$ iff $\sigma(1) - \sigma(0) = 0$ iff $\sigma(1) = \sigma(0)$ iff σ is closed. Further, if σ_1 , σ_2 are paths in X with $\sigma_1(1) = \sigma_2(0)$ and $\sigma_1(0) = \sigma_2(1)$, then $\sigma_1 + \sigma_2$ is a nonzero element of $\ker \partial_1$ that is not a closed path. \square

- **4.4.** EXAMPLE. We show that if $X = \emptyset$, then $H_n(X) = 0$ for all $n \ge 0$. Since $X = \emptyset$, $S_n(X)$ is the free abelian group with basis \emptyset , so that $S_n(X) = 0$ by definition (see Thm 4.2). If $n \ge 0$, then $\partial_n : S_n(X) \to S_{n-1}(X)$ is given by $\partial_n : 0 \mapsto 0$. Thus $Z_n(X) = \ker \partial_n = 0$ and $B_n(X) = \operatorname{im} \partial_{n+1} = 0$. Hence, $H_n(X) = Z_n(X)/B_n(X) = 0$.
- **4.6.** For each fixed $n \ge 0$, $S_n : \mathbf{Top} \to \mathbf{Ab}$ is a functor. PROOF. We have already defined $S_n(X)$ on objects X. If $f : X \to Y$ is a continuous map, define $f_\# : S_n(X) \to S_n(Y)$ by

$$f_{\#}(\Sigma m_{\sigma}\sigma) = \Sigma m_{\sigma}(f \circ \sigma).$$

Then $S_n(f)$ is a homomorphism since

$$f_\#(\Sigma\:m_\sigma\sigma+\Sigma\:n_\sigma\sigma)=\Sigma\:(m_\sigma+n_\sigma)(f\circ\sigma)=f_\#(\Sigma\:m_\sigma\sigma)+f_\#(\Sigma\:n_\sigma\sigma).$$

To check condition (iii), let $f: X \to Y$ and $g: Y \to Z$ be continuous. Then

$$(g\circ f)_{\#}(\Sigma\,m_{\sigma}\sigma)=\Sigma\,m_{\sigma}(g\circ f\circ\sigma)=(g_{\#}\circ f_{\#})(\Sigma\,m_{\sigma}\sigma).$$

Finally, if $1_X: X \to X$ is the identity, then

$$1_{X\#}(\Sigma m_{\sigma}\sigma) = \Sigma m_{\sigma}1_{X}\sigma = \Sigma m_{\sigma}\sigma.$$

4.7. EXAMPLE. We show that $H_n(S^0) = 0$ for all $n \ge 0$. by Theorem 4.13,

$$H_n(S^0) \cong H_n(\{-1\}) \times H_n(\{1\}),$$

and by Theorem 4.12, $H_n(\{-1\}) = H_n(\{1\}) = 0$.

4.9. EXAMPLE. Using the explicit formula for β_{n+1} ,

$$\beta_{n+1} = \sum_{i=0}^{n} (-1)^{i} [a_0, \dots, a_i, b_i, b_{i+1}, \dots, b_n],$$

we show that

$$\partial_{n+1} \beta_{n+1} = (\lambda_{1\#}^{\triangle} - \lambda_{0\#}^{\triangle} - P_{n-1}^{\triangle} \partial_n)(\delta)$$

for n = 0 and n = 1. Suppose n = 0. Let $a_0 = (e_0, 0)$, and let $b_0 = (e_0, 1)$. Then

$$\partial_1 \beta_1 = \partial_1([a_0, b_0]) = b_0 - a_0.$$

It is easy to see that $\lambda_{0\#}^{\triangle}\delta: e_0 \mapsto (e_0,0) = a_0$ and $\lambda_{1\#}^{\triangle}\delta: e_0 \mapsto (e_0,1) = b_0$. Further, $P_{-1}^{\triangle}\partial_0\delta: e_0 \mapsto 0$ by definition of P_{-1}^{\triangle} . Thus

$$(\lambda_{1\#}^{\triangle} - \lambda_{0\#}^{\triangle} - P_{-1}^{\triangle} \partial_{0})(\delta) = \lambda_{1\#}^{\triangle} \delta - \lambda_{0\#}^{\triangle} \delta - P_{-1}^{\triangle} \partial_{0} \delta$$

$$= b_{0} - a_{0}$$

$$= \partial_{1} \beta_{1}.$$

Now suppose n = 1 and let $a_i = (e_i, 0)$, and let $b_i = (e_i, 1)$ for i = 0, 1. Then we have

$$\partial_2 \beta_2 = \partial_2 ([a_0, b_0, b_1] - [a_0, a_1, b_1])$$

$$= [b_0, b_1] - [a_0, b_1] + [a_0, b_0] - [a_1, b_1] + [a_0, b_1] - [a_0, a_1]$$

$$= [b_0, b_1] + [a_0, b_0] - [a_1, b_1] - [a_0, a_1].$$

Now $\lambda_{0\#}^{\triangle}\delta: e_i \mapsto (e_i, 0) = a_i$ and $\lambda_{1\#}^{\triangle}\delta: e_i \mapsto (e_i, 1) = b_i$ for i = 0, 1. Thus $\lambda_{0\#}^{\triangle}\delta = [a_0, a_1]$ and $\lambda_{1\#}^{\triangle}\delta = [b_0, b_1]$. Observe that

$$(P_0^{\triangle}\partial_1)(\delta) = P_0^{\triangle}(\partial_1\delta)$$

$$= P_0^{\triangle}(\varepsilon_0 - \varepsilon_1)$$

$$= P_0^{\triangle}(\varepsilon_0) - P_0^{\triangle}(\varepsilon_1)$$

$$= (\varepsilon_0 \times 1)_{\#}(\beta_1) - (\varepsilon_1 \times 1)_{\#}(\beta_1)$$

$$= (\varepsilon_0 \times 1)\beta_1 - (\varepsilon_1 \times 1)\beta_1,$$

where $\beta_1 = [a_0, b_0]$. Since

$$(\varepsilon_0 \times 1)\beta_1 : e_0 \mapsto a_0 \mapsto (\varepsilon_0 \times 1)(a_0) = a_1,$$

$$(\varepsilon_0 \times 1)\beta_1 : e_1 \mapsto b_0 \mapsto (\varepsilon_0 \times 1)(b_0) = b_1,$$

$$(\varepsilon_1 \times 1)\beta_1 : e_0 \mapsto a_0 \mapsto (\varepsilon_1 \times 1)(a_0) = a_0,$$

$$(\varepsilon_1 \times 1)\beta_1 : e_1 \mapsto b_0 \mapsto (\varepsilon_1 \times 1)(b_0) = b_0,$$

we have $(\varepsilon_0 \times 1)\beta_1 = [a_1, b_1]$ and $(\varepsilon_1 \times 1)\beta_1 = [a_0, b_0]$. Thus

$$(\lambda_{1\#}^{\triangle} - \lambda_{0\#}^{\triangle} - P_0^{\triangle} \partial_1)(\delta) = \lambda_{1\#}^{\triangle} \delta - \lambda_{0\#}^{\triangle} \delta - P_0^{\triangle} \partial_1 \delta$$

$$= [b_0, b_1] - [a_0, a_1] - ([a_1, b_1] - [a_0, b_0])$$

$$= \partial_2 \beta_2.$$

An explicit formula for $P_1^X(\sigma)$, where $\sigma: \triangle^1 \to X$ is a 1- simplex, is

$$\begin{split} P_1^X(\sigma) &= (\sigma \times 1)_\#(\beta_2) \\ &= (\sigma \times 1)_\#([a_0, b_0, b_1] - [a_0, a_1, b_1]) \\ &= (\sigma \times 1)[a_0, b_0, b_1] - (\sigma \times 1)[a_0, a_1, b_1]. \end{split}$$

One thus views $P_1^X(\sigma)$ as the "triangulated prism over σ ."

4.13. EXAMPLE. The Hurewicz map is "natural." If $h:(X,x_0)\to (Y,y_0)$ is a map of pointed spaces, then the following diagram commutes:

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{h_*} & \pi_1(Y, y_0) \\
\downarrow^{\varphi} & & \downarrow^{\varphi} \\
H_1(X) & \xrightarrow{h_*} & H_1(Y)
\end{array}$$

To see this, opbserve that if f is a closed path in X at x_0 , then

$$(\varphi h_*)([f]) = \varphi([h \circ f]) = \operatorname{cls} (h \circ f)\eta$$
$$= h_*(\operatorname{cls} f\eta)$$
$$= (h_*\varphi)([f])$$

4.14. If f is a (not necessarily closed) path in X, then the 1-chain f is homologous to $-f^{-1}$.

PROOF. Define a continuous map $\sigma: \triangle^2 \to X$ as indicated in the following picture:

In more detail, first define σ on Δ^2 : $\sigma(1-t,t,0)=f(t)$; $\sigma(0,1-t,t)=f^{-1}(t)$; $\sigma(1-t,0,t)=(f*f^{-1})(t)$. Now define σ on all of Δ^2 by setting it constant on the line segments with endpoints a=a(t)=(1-t,t,0) and b=b(t)=((2-t)/2,0,t/2), and constant on the line segments with endpoints c=c(t)=(0,1-t,t) and d=d(t)=((1-t)/2,0,(1+t)/2). It is easy to see that $\sigma:\Delta^2\to X$ is continuous, that is, $\sigma\in S_2(X)$. Moreover, $\partial\sigma=\sigma\varepsilon_0-\sigma\varepsilon_1+\sigma\varepsilon_2=f^{-1}\eta-(f*f^{-1})\eta+f\eta$. Thus

$$cls(f^{-1}\eta - (f * f^{-1})\eta + f\eta) = B_1(X),$$

so that

$$cls(f^{-1}\eta + f\eta) = cls(f * f^{-1})\eta.$$

But $f * f^{-1}$ is nullhomotopic, so that $\operatorname{cls}(f * f^{-1})\eta = B_1(X)$ by Theorem 4.27. Hence, $\operatorname{cls}(f^{-1}\eta + f\eta) = B_1(X)$, and so, $f\eta$ is homologous to $-f^{-1}\eta$.

Chapter 5: Long Exact Sequences

5.1. (i) If $0 \to A \xrightarrow{f} B$ is exact, then f is injective (there is no need to label the only possible homomorphism $0 \to A$).

(ii) If $B \xrightarrow{g} C \to 0$ is exact, then g is surjective (there is no need to label the only possible homomorphism $C \to 0$).

(iii) If $0 \to A \xrightarrow{f} B \to 0$ is exact, then f is an isomorphism.

(iv) If $0 \to A \to 0$ is exact, then A = 0.

PROOF. (i) Suppose $0 \to A \xrightarrow{f} B$ is exact. Then $\ker f = \operatorname{im}(0 \to A) = \{0\}$. Hence, f is injective.

(ii) Suppose $B \xrightarrow{g} C \to 0$ is exact. Then $\operatorname{im} g = \ker(C \to 0) = C$. Hence, g is surjective.

(iii) Suppose $0 \to A \xrightarrow{f} B \to 0$ is exact. Then f is bijective by (i) and (ii). Therefore, f is an isomorphism.

(iv) Suppose $0 \rightarrow A \rightarrow 0$ is exact. Then

$$0 = \operatorname{im}(0 \to A) = \ker(A \to 0) = A.$$

Thus A = 0.

5.2. If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is exact, then f is surjective if and only if h is injective. PROOF. Suppose f is surjective. Then $\ker g = \operatorname{im} f = B$, so that

$$\ker h = \operatorname{im} g \cong B / \ker g = B / B \cong 0.$$

Hence, ker h = 0, and so, h is injective. For the converse, suppose h is injective. Then im $g = \ker h = \{0\}$. It follows that im $f = \ker g = B$.

5.3. EXAMPLE. A short exact sequence is an exact sequence of the form

$$0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0.$$

Then i is injective since $\ker i = \operatorname{im}(0 \to A) = \{0\}$. Hence, $iA \cong A$. Observe that $\ker p = \operatorname{im} i = iA$ and $\operatorname{im} p = \ker(C \to 0) = C$. Therefore, $B/iA \cong C$ via $b+iA \mapsto pb$ by the First Isomorphism Theorem.

$$\cdots \to C_{n+1} \to A_n \xrightarrow{h_n} B_n \to C_n \to A_{n-1} \xrightarrow{h_{n-1}} B_{n-1} \to C_{n-1} \to \cdots$$

is exact and every third arrow $h_n: A_n \to B_n$ is an iosomorphism, then $C_n = 0$ for all n.

PROOF. Since h_n is surjective, it follows that

$$\ker(B_n \to C_n) = \operatorname{im} h_n = B_n.$$

Hence, $im(B_n \to C_n) = \{0\}$. Since h_{n-1} is injective, it follows that

$$im(C_n \to A_{n-1}) = \ker h_{n-1} = \{0\}$$

Hence, $\ker(C_n \to A_{n-1}) = C_n$. Since $\operatorname{im}(B_n \to C_n) = \ker(C_n \to A_{n-1})$, it follows that $C_n = 0$.

5.6. EXAMPLE. If (S_*, ∂) is a complex with $\partial_n = 0$ for every $n \in \mathbb{Z}$, then $H_n(S_*) = S_n$ for every $n \in \mathbb{Z}$:

$$H_n(S_*) = Z_n(S_*)/B_n(S_*) = S_n/\{0\}$$

 $\cong S_n.$

5.8. A sequence $S'_* \xrightarrow{f} S_* \xrightarrow{g} S''_*$ is exact in **Comp** if and only if $S'_n \xrightarrow{f_n} S_n \xrightarrow{g_n} S''_n$ is exact in **Ab** for every $n \in \mathbb{Z}$.

PROOF. We have im f is

$$\cdots \rightarrow \text{im } f_{n+1} \rightarrow \text{im } f_n \rightarrow \text{im } f_{n-1} \rightarrow \cdots,$$

and ker g is

$$\cdots \rightarrow \ker g_{n+1} \rightarrow \ker g_n \rightarrow \ker g_{n-1} \rightarrow \cdots$$

Thus im $f = \ker g$ if and only if im $f_n = \ker g_n$ for all n if and only if $S_n \xrightarrow{f_n} S_n''$ is exact for all n.

5.11. The third isomorphism theorem holds in Comp. If $U_* \subset T_* \subset S_*$ are subcomplexes, then there is a short exact sequence of complexes

$$0 \to T_*/U_* \xrightarrow{i} S_*/U_* \xrightarrow{p} S_*/T_* \to 0,$$

where $i_n: t_n + U_n \mapsto t_n + U_n$ (inclusion) and $p_n(s_n + U_n) = s_n + T_n$. PROOF. Let $n \in \mathbb{Z}$. Observe that

$$(\bar{\partial}_n i_n)(t_n + U_n) = \partial_n t_n + U_{n-1} = (i_{n-1}\bar{\partial}_n)(t_n + U_n)$$

and

$$(\bar{\partial}_n p_n)(s_n + U_n) = \partial_n s_n + T_{n-1} = (p_{n-1}\bar{\partial}_n)(s_n + U_n).$$

It follows that i and p are chain maps.

Observe that $\ker i_n = \{U_n\} = \operatorname{im}(0 \to T_n/U_n)$ and $\operatorname{im} p_n = S_n/T_n = \ker(S_n/T_n \to 0)$. Finally, we show that $\operatorname{im} i_n = \ker p_n$. Let $t_n + U_n \in \operatorname{im} i_n$. Then

$$p_n(t_n + U_n) = t_n + T_n = T_n,$$

so that $t_n + U_n \in \ker p_n$. For the reverse inclusion, let $s_n + U_n \in \ker p_n$. Then

$$p_n(s_n + U_n) = s_n + T_n = T_n,$$

so that $s_n \in T_n$. Thus $s_n + U_n \in \text{im } i_n$.

5.12. For every n, $H_n(\Sigma_{\lambda}S_*^{\lambda}) \cong \Sigma_{\lambda}H_n(S_*^{\lambda})$.

PROOF. Let $(S_*^{\lambda}, \partial^{\lambda})$, $(\Sigma_{\lambda} S_*^{\lambda}, \partial)$ be chain complexes and define $\varphi : H_n(\Sigma_{\lambda} S_*^{\lambda}) \to \Sigma_{\lambda} H_n(S_*^{\lambda})$ by $\varphi : \operatorname{cls}(\Sigma_{\lambda} s_n^{\lambda}) \mapsto \Sigma_{\lambda} \operatorname{cls} s_n^{\lambda}$. Since $\partial_n(\Sigma_{\lambda} s_n^{\lambda}) = \Sigma_{\lambda} \partial_n^{\lambda} s_n^{\lambda}$, it is easy to see that $\Sigma_{\lambda} s_n^{\lambda} \in B_n(\Sigma_{\lambda} S_*^{\lambda})$ if and only if $s_n^{\lambda} \in B_n(S_*^{\lambda})$ for all λ . To show that φ is well-defined, suppose $\operatorname{cls}(\Sigma_{\lambda} s_n^{\lambda}) = \operatorname{cls}(\Sigma_{\lambda} t_n^{\lambda})$. Then

$$\Sigma(s_n^{\lambda} - t_n^{\lambda}) = \Sigma_{\lambda} s_n^{\lambda} - \Sigma_{\lambda} t_n^{\lambda} \in B_n(\Sigma_{\lambda} S_*^{\lambda}),$$

so that $s_n^{\lambda} - t_n^{\lambda} \in B_n(S_*^{\lambda})$ for all λ . Hence, $\Sigma_{\lambda} \operatorname{cls} s_n^{\lambda} = \Sigma_{\lambda} \operatorname{cls} t_n^{\lambda}$.

To show that φ is injective, suppose $\Sigma_{\lambda} \operatorname{cls} s_n^{\lambda} = \Sigma_{\lambda} \operatorname{cls} t_n^{\lambda}$. Then $\operatorname{cls} s_n^{\lambda} = \operatorname{cls} t_n^{\lambda}$ for all λ , so that $s_n^{\lambda} - t_n^{\lambda} \in B_n(S_n^{\lambda})$ for all λ . Thus

$$\Sigma_{\lambda} s_n^{\lambda} - \Sigma_{\lambda} t_n^{\lambda} = \Sigma (s_n^{\lambda} - t_n^{\lambda}) \in B_n(\Sigma_{\lambda} S_*^{\lambda}),$$

so that $\operatorname{cls}(\Sigma_{\lambda} s_n^{\lambda}) = \operatorname{cls}(\Sigma_{\lambda} t_n^{\lambda})$. It is clear that φ is surjective.

Finally, we show that φ is a homomorphism. We have

$$\varphi(\operatorname{cls}(\Sigma_{\lambda}s_{n}^{\lambda}) + \operatorname{cls}(\Sigma_{\lambda}t_{n}^{\lambda})) = \varphi(\operatorname{cls}(\Sigma_{\lambda}(s_{n}^{\lambda} + t_{n}^{\lambda}))) = \Sigma_{\lambda}\operatorname{cls}(s_{n}^{\lambda} + t_{n}^{\lambda})$$

$$= \Sigma_{\lambda}\operatorname{cls}s_{n}^{\lambda} + \Sigma_{\lambda}\operatorname{cls}t_{n}^{\lambda}$$

$$= \varphi(\operatorname{cls}(\Sigma_{\lambda}s_{n}^{\lambda})) + \varphi(\operatorname{cls}(\Sigma_{\lambda}t_{n}^{\lambda}).$$

Chapter 7: Simplicial Complexes

7.4. (i) If K is a simplicial complex and F is a subset of |K|, then F is closed if and only if $F \cap s$ is closed in s for every $s \in K$.

(ii) If s is a simplex in K of largest dimension, then $s^{\circ} = s - \dot{s}$ is an open subset of |K|.

PROOF. (i) If F is closed in |K|, then $F \cap s$ is closed in s by the definition of subspace. For the converse, suppose $F \cap s$ is closed in s for every $s \in K$. Let s_1, \ldots, s_m be the simplexes in K. Then for all j, there is some closed set A_j of |K| such that $F \cap s_j = A_j \cap s_j$. Now each $A_j \cap s_j$ is closed in |K| since each s_j is closed in |K|. Thus

$$F = F \cap |K| = F \cap (\bigcup_{j=1}^{m} s_j) = \bigcup_{j=1}^{m} (F \cap s_j)$$
$$= \bigcup_{j=1}^{m} (A_j \cap s_j)$$

is closed in |K|.

(ii) Let $s' \in K$. Then $(|K| - s^{\circ}) \cap s'$ is either $s - s^{\circ}$ or is all of s'. Hence, $|K| - s^{\circ}$ is closed in s'. It follows from part (i) that $|K| - s^{\circ}$ is closed in |K|, so that s° is open in |K|.

7.10. A simplicial map $\varphi: K \to L$ is a simplicial approximation to $f: |K| \to |L|$ if and only if, whenever $x \in |K|$ and $f(x) \in s^{\circ}$ (where s is a simplex of L), then $|\varphi|(x) \in s$.

PROOF. Suppose $s \in L$ with $f(x) \in s^{\circ}$. Suppose s' is a simplex in K with $x \in (s')^{\circ}$. We show that $|\varphi|(s')$ is a face of s. Suppose $|\varphi|(s')$ is not a face of s. Then there is $p \in \text{Vert}(s')$ such that $\varphi(p) \in \text{Vert}(|\varphi|(s')) - \text{Vert}(s)$. But

$$f(x) \in f(\operatorname{st}(p)) \subset \operatorname{st}(\varphi(p)).$$

This is a contradiction since $\varphi(p)$ is not a vertex of s.

For the converse, suppose $p \in \text{Vert}(K)$ and $x \in \text{st}(p)$. The there is $s' \in K$ with $p \in \text{Vert}(s')$ and $x \in (s')^{\circ}$. Hence,

$$|\varphi|(x) \in |\varphi|((s')^{\circ}) \subset |\varphi|(s')^{\circ}.$$

Suppose $f(x) \in s^{\circ}$ for some $s \in L$. Then $|\varphi|(x) \in s$ by hypothesis. Since $|\varphi|(s')^{\circ}$ and s have a point in common, namely $|\varphi|(x)$, it follows that $|\varphi|(s')$ is a face of s. Thus $\varphi(p) \in \text{Vert}(s)$, and so,

$$f(x) \in s^{\circ} \subset \operatorname{st}(\varphi(p)).$$

We have shown that $f(\operatorname{st}(p)) \subset \operatorname{st}(\varphi(p))$.

7.11. If $\varphi: K \to L$ is a simplicial approximation to $f: |K| \to |L|$, then $|\varphi| \simeq f$. PROOF. For each simplex s in K, define $G_s: s \times I \to |L|$ by

$$G_s(x,i) = f(x)(1-i) + |\varphi|(x)i.$$

Note that each G_s is well-defined since if $f(x) \in s^\circ$, then $|\varphi|(x) \in s$ by Exercise 7.10. Thus $G_s : f|s \simeq |\varphi||s$. Thus there is a unique continuous $G : |K| \times I \to |L|$ defined by $G(x,i) = G_s(x,i)$ by the Gluing Lemma. Hence, $G : f \simeq |\varphi|$.